Crystal structure of human Mre11: understanding tumorigenic mutations.

نویسندگان

  • Young Bong Park
  • Jina Chae
  • Young Chang Kim
  • Yunje Cho
چکیده

Mre11 plays an important role in repairing damaged DNA by cleaving broken ends and by providing a platform for other DNA repair proteins. Various Mre11 mutations have been identified in several types of cancer. We have determined the crystal structure of the human Mre11 core (hMre11), which contains the nuclease and capping domains. hMre11 dimerizes through the interfaces between loop β3-α3 from one Mre11 and loop β4-β5 from another Mre11, and between loop α2-β3 from one Mre11 and helices α2 and α3 from another Mre11, and assembles into a completely different dimeric architecture compared with bacterial or archaeal Mre11 homologs. Nbs1 binds to the region containing loop α2-β3 which participates in dimerization. The hMre11 structure in conjunction with biochemical analyses reveals that many tumorigenic mutations are primarily associated with Nbs1 binding and partly with nuclease activities, providing a framework for understanding how mutations inactivate Mre11.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mre11 Dimers Coordinate DNA End Bridging and Nuclease Processing in Double-Strand-Break Repair

Mre11 forms the core of the multifunctional Mre11-Rad50-Nbs1 (MRN) complex that detects DNA double-strand breaks (DSBs), activates the ATM checkpoint kinase, and initiates homologous recombination (HR) repair of DSBs. To define the roles of Mre11 in both DNA bridging and nucleolytic processing during initiation of DSB repair, we combined small-angle X-ray scattering (SAXS) and crystal structure...

متن کامل

Structural Biochemistry and Interaction Architecture of the DNA Double-Strand Break Repair Mre11 Nuclease and Rad50-ATPase

To clarify functions of the Mre11/Rad50 (MR) complex in DNA double-strand break repair, we report Pyrococcus furiosus Mre11 crystal structures, revealing a protein phosphatase-like, dimanganese binding domain capped by a unique domain controlling active site access. These structures unify Mre11's multiple nuclease activities in a single endo/exonuclease mechanism and reveal eukaryotic macromole...

متن کامل

Disease-associated MRE11 mutants impact ATM/ATR DNA damage signaling by distinct mechanisms.

DNA double-strand breaks (DSBs) can lead to instability of the genome if not repaired correctly. The MRE11/RAD50/NBS1 (MRN) complex binds DSBs and initiates damage-induced signaling cascades via activation of the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia- and rad3-related (ATR) kinases. Mutations throughout MRE11 cause ataxia-telangiectasia-like disorder (ATLD) featuring cer...

متن کامل

Human MRE11 is inactivated in mismatch repair-deficient cancers.

Mutations of the ATM and NBS1 genes are responsible for the inherited Ataxia-Telangiectasia and Nijmegen Breakage Syndrome, both of which are associated with a predisposition to cancer. A related syndrome, the Ataxia-Telangiectasia-like disorder, is due to mutations of the MRE11 gene. However, the role of this gene in cancer development has not been established. Here we describe an often homozy...

متن کامل

Dimerization of the Rad50 protein is independent of the conserved hook domain.

The Mre11 complex (Mre11-Rad50-Nbs1) is involved in a diverse array of DNA metabolic processes including the response to DNA double-strand breaks (DSBs). The structure of Rad50 plays a key role in the DNA-binding and end-bridging activity of the complex. An interesting feature within the central portion of the Rad50 protein is the Rad50 hook region that is defined by the highly conserved CXXC m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 19 11  شماره 

صفحات  -

تاریخ انتشار 2011